$$\text{=}$$ | $$\text{lig med}$$ | $$a = b$$ |
$$\neq$$ | $$\text{forskelig fra}$$ | $$b \neq c$$ |
$$\equiv$$ | $$\text{identisk med}$$ | $$(x + y)·(x - y)-(x^2 - y^2) \equiv 0$$ |
$$\gt$$ | $$\text{større end}$$ | $$a \gt b$$ |
$$\lt$$ | $$\text{mindre end}$$ | $$a \lt b$$ |
$$\le$$ | $$\text{mindre end eller lig med}$$ | $$a \le b$$ |
$$\ge$$ | $$\text{større end eller lig med}$$ | $$a \ge b$$ |
$$|$$ | $$\text{går op i, er divisor i}$$ | $$3|9$$ |
$$\nmid$$ | $$\text{går ikke op i}$$ | $$5|11$$ |
$$\equiv$$ | $$\text{kongruent med (modulo n)}$$ | $$p \equiv q \text{(mod n) (betyder, at }n \equiv p - q); 17 ≡ 12 \text{ mod } 5$$ |
$$\text{s}f\text{d}$$ | $$\text{største fælles divisor (hele tal)}$$ | $$\text{s}f\text{d}(12,30)=6$$ |
$$\text{m}f\text{m}$$ | $$\text{mindste fælles multiplum for (hele tal)}$$ | $$\text{m}f\text{m}(12,30)=60$$ |
$$n!$$ | $$\text{fakultet, "udråbstegn"}$$ | $$n! = n(n-1)....3 · 2 · 1; 5! = 120$$ |
$$P_\mathit{n,r}$$ | $$\text{permutation}$$ | $$P_\mathit{n,r} = n(n-1)...(n - r + 1)$$ |
$$K_\mathit{n,r} ;\begin{pmatrix} n\\ r\\ \end{pmatrix}$$ | $$\text{kombination}$$ | $$K_\mathit{n,r} = \begin{pmatrix} n\\ r\\ \end{pmatrix} = \frac{n(n-1)...(n - r + 1)}{r· (r-1)...3·2·1}$$ |
$$\text{[ ], ent}$$ | $$\text{den hele del af}$$ | $$\left[7\frac{3}{5}\right]=\text{ent 7}\frac{3}{5}=7$$ |
$$\text{+}$$ | $$\text{sum (af tal, udtryk, funktioner), "plus"}$$ | $$3+8, f+g $$ |
$$\text{-, } \div$$ | $$\text{differens, "minus"}$$ | $$3-8, f-g $$ |
$$\text{· , x}$$ | $$\text{produkt, "gange"}$$ | $$6 · 2, 6 \text{ x } 2 $$ |
$$\text{: , /}$$ | $$\text{division (brøk), "divideret"}$$ | $$6 : 2, 6 / 2 $$ |
$$x^n$$ | $$\text{potens (n hel positiv)}$$ | $$x^n = x · x · ...· x \text{ (n gange)}$$ |
$$\sqrt[n]{x}$$ | $$\text{rod (n hel positiv)}$$ | $$\left(\sqrt[n]{x}\right)^n=x$$ |
$$x^a$$ | $$\text{potens (a vilkårlig reel)}$$ | $$x^\frac{5}{7} = \sqrt[7]{x^5}$$ |
$$|x|$$ | $$\text{numerisk (absolut) værdi}$$ | $$|-2|=2$$ |
$$\text{[ , ]}$$ | $$\text{afsluttet interval (lukket interval)}$$ | $$[4,9] = ❴ \text{ }x | 4 \le x \le 9\text{ } ❵ $$ |
$$\text{] , ]}$$ | $$\text{halvåbent interval}$$ | $$]4,9] = ❴ \text{ }x | 4 \lt x \le 9\text{ } ❵ $$ |
$$\text{[ , [}$$ | $$\text{halvåbent interval}$$ | $$[4,9[ = ❴ \text{ }x | 4 \le x \lt 9\text{ } ❵ $$ |
$$\text{] , [}$$ | $$\text{åbent interval}$$ | $$]4,9[ = ❴ \text{ }x | 4 \lt x \lt 9\text{ } ❵ $$ |